
 
International Journal of Sustainability Management and Information Technologies 
2017; 3(6): 57-62 

http://www.sciencepublishinggroup.com/j/ijsmit 

doi: 10.11648/j.ijsmit.20170306.11 

ISSN: 2575-5102 (Print); ISSN: 2575-5110 (Online)  

 

Distances and Similarity Measures in Heuristic Possibilistic 
Clustering the Intuitionistic Fuzzy Data: A Comparative 
Study 

Dmitri A. Viattchenin
1, *

, Stanislav Shiray
2
 

1Laboratory of System Identification, United Institute of Informatics Problems of the National Academy of Sciences of Belarus, Minsk, 

Belarus 
2Department of Software Information Technology, Belarusian State University of Informatics and Radio-Electronics, Minsk, Belarus 

Email address: 

viattchenin@mail.ru (D. A. Viattchenin), ashaman410@gmail.com (S. Shiray) 
*Corresponding author 

To cite this article: 
Dmitri A. Viattchenin, Stanislav Shiray. Distances and Similarity Measures in Heuristic Possibilistic Clustering the Intuitionistic Fuzzy Data: 

A Comparative Study. International Journal of Sustainability Management and Information Technologies. Vol. 3, No. 6, 2017, pp. 57-62.  

doi: 10.11648/j.ijsmit.20170306.11 

Received: February 28, 2017; Accepted: March 22, 2017; Published: December 14, 2017 

 

Abstract: The note deals with the problem of heuristic possibilistic clustering the intuitionistic fuzzy data. Different 

distances between intuitionistic fuzzy sets are considered in the paper. Similarity measures for intuitionistic fuzzy sets for 

constructing intuitionistic fuzzy tolerance relations are also considered. A numerical example of application of these distances 

and similarity measures for clustering the intuitionistic fuzzy data is presented. Some preliminary conclusions are formulated. 
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1. Introduction 

Cluster analysis is a group of approaches for classifying 

objects according to their likeness by means of unsupervised 

training. It makes the objects, which have greater likeness, as 

a class, or cluster, and occupies the partial area of feature 

space. The cluster prototype of each partial area is 

respectively acting as a representative of the corresponding 

type. Fuzzy sets theory, which was proposed by Zadeh [1], 

makes it possible to model partial belongingness to a cluster, 

which is described by a membership function. Fuzzy 

clustering methods have been applied effectively in image 

processing, data analysis, symbol recognition and modeling. 

Moreover, fuzzy set theory is a basis for possibility theory 

[2]. Thus, a possibilistic approach to clustering was proposed 

by Krishnapuram and Keller in [3] and developed by other 

researchers. A concept of possibilistic partition is a basis of 

possibilistic clustering methods and the membership values 

can be interpreted as the values of typicality degree. Fuzzy 

and possibilistic clustering methods are considered at length, 

for instance, in [4-6]. 

The most common and widespread approach to fuzzy 

clustering is the optimization approach. Moreover, major 

possibilistic clustering methods are also objective function-

based clustering algorithms. However, heuristic algorithms of 

fuzzy clustering are simple and very effective in many cases, 

because heuristic algorithms display high level of essential 

clarity and low level of complexity. Some heuristic clustering 

procedures are based on the definition of a cluster concept 

and the purpose of these algorithms is cluster detection 

conform to a given definition. Such algorithms are called 

algorithms of direct classification or direct clustering 

algorithms. Thus, a heuristic approach to possibilistic 

clustering in which the sought clustering structure of the set 

of objects is based directly on the formal definition of fuzzy 

α -cluster and possibilistic memberships are determined 

directly from the values of pairwise similarity of objects was 

proposed in [7] and developed in other publications. The 

essence of the heuristic approach to possibilistic clustering is 

that the sought clustering structure of the set of observations 

is formed based directly on the formal definition of fuzzy 

cluster and possibilistic memberships are determined also 

directly from the values of the pairwise similarity of 
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observations. A concept of the allotment among fuzzy 

clusters is basic concept of the approach and the allotment 

among fuzzy clusters is a special case of the possibilistic 

partition.  

Direct heuristic algorithms of possibilistic clustering can 

be divided into two types: relational versus prototype-based. 

A fuzzy tolerance relation T  matrix is a matrix of the initial 

data for the direct heuristic relational algorithms of 

possibilistic clustering and a matrix of attributes is a matrix 

of the initial data for the prototype-based algorithms. In 

particular, the group of direct relational heuristic algorithms 

of possibilistic clustering includes 

a) the D-AFC(c)-algorithm which is based on the 

construction of an allotment ( )cR X∗
 among an a priori 

given number c  of partially separate fuzzy α -clusters; 

b) the D-PAFC-algorithm which is based on the 

construction of an principal allotment ( )PR X∗
 among 

an unknown minimal number of at least c  fully 

separate fuzzy α -clusters; 

c) the D-AFC-PS(c)-algorithm which is based on the 

construction of an allotment ( )cR X∗
 among an a priori 

given number c  of partially separate fuzzy α -clusters 

in the presence of labeled objects.  

On the other hand, the family of direct prototype-based 

heuristic algorithms of possibilistic clustering consists of 

a) the D-AFC-TC-algorithm which is based on the 

construction of an allotment ( )cR X∗
 among an a priori 

unknown number c  of fully separate fuzzy α -clusters;  
b) the D-PAFC-TC-algorithm which is based on the 

construction of a principal allotment ( )PR X∗
 among an 

a priori unknown minimal number of at least c  fully 

separate fuzzy α -clusters; 

c) the D-AFC-TC(α)-algorithm which is based on the 

construction of an allotment ( )cR X∗
 among an a priori 

unknown number c  of fully separate fuzzy α -clusters 

with respect to the minimal value α  of the tolerance 

threshold. 

It should be noted, that these prototype-based heuristic 

algorithms of possibilistic clustering are based on the 

transitive closure of the initial fuzzy tolerance. 

Since the fundamental Atanassov’s paper [8] was 

published, intuitionistic fuzzy sets theory has been applied to 

many areas such as learning, decision-making and 

classification. Techniques for clustering the intuitionistic 

fuzzy data were proposed by different researchers and these 

algorithms are summarized in [9]. However, the intuitionistic 

fuzzy set-based extension of the heuristic approach to 

possibilistic clustering was also outlined in [7]. Direct 

heuristic algorithms of possibilistic clustering for processing 

the intuitionistic fuzzy data can be also divided into two 

types: relational versus prototype-based. An intuitionistic 

fuzzy tolerance relation matrix is a matrix of the initial data 

for the relational algorithms and a matrix of attributes is a 

matrix of the initial data for the prototype-based algorithms. 

In particular, the group of direct relational heuristic 

algorithms of possibilistic clustering the intuitionistic fuzzy 

data contains  

a) the D-PAIFC-algorithm which is based on the 

construction of an principal allotment ( )PIR X∗
 among 

a priori unknown minimal number at least c  fully 

separate intuitionistic fuzzy ( , )α β -clusters [7];  

b) the D-AIFC(c)-algorithm which is based on the 

construction of an allotment ( )cIR X∗
 among a priori 

given number c  of partially separate intuitionistic 

fuzzy ( , )α β -clusters [10]. 

The group of direct prototype-based heuristic algorithms 

of possibilistic clustering the intuitionistic fuzzy data is 

formed by  

a) the D-PAIFC-TC-algorithm which is based on the 

construction of a principal allotment ( )PIR X∗
 among a 

priori unknown minimal number at least c  fully 

separate intuitionistic fuzzy ( , )α β -clusters [11];  

b) the D-AIFC-TC-algorithm which is based on the 

construction of an allotment ( )cIR X∗
 among a priori 

unknown number c  of fully separate intuitionistic 

fuzzy ( , )α β -clusters [12]. 

It should be noted, that these prototype-based heuristic 

algorithms of possibilistic clustering are based on the 

transitive closure of the initial intuitionistic fuzzy tolerance. 

The corresponding procedure is proposed in [13]. 

The main purpose of the presented paper is a comparative 

analysis of application of different distances and similarity 

measures between intuitionistic fuzzy sets for clustering the 

intuitionistic fuzzy data by using heuristic algorithms of 

possibilistic clustering. In particular, the D-PAIFC-algorithm 

and the D-PAFC-algorithm were selected for the comparison. 

Thus, the contents of this paper are the following: in the 

second section some definitions of the intuitionistic fuzzy set 

theory are described, in the third section distances between 

intuitionistic fuzzy sets are presented, in the fourth section 

similarity measures for constructing intuitionistic fuzzy 

tolerance relation are described, in the fifth section results of 

numerical experiments are presented, in sixth section some 

preliminary conclusions are formulated and perspectives of 

future investigations are outlined. 

2. Basic Definitions of the Intuitionistic 

Fuzzy Set Theory 

The intuitionistic fuzzy sets were developed by Atanassov 

also in [14], [15] and other researchers as an extension of the 

ordinary fuzzy sets. Let us remind some basic definitions of 

the intuitionistic fuzzy sets theory which will be used in 

further considerations. All concepts will be presented for a 

finite universe 
1

{ , , }
n

X x x= … . 

An intuitionistic fuzzy set IA  in X  is given by ordered 

triple { }, ( ), ( ) |i IA i IA i iIA x x x x Xµ ν= ∈ , where 
IA

µ , :
IA

ν  

[0,1]X →  should satisfy a condition 

0 ( ) ( ) 1
IA i IA i

x xµ ν≤ + ≤ ,                          (1) 
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for all 
i

x X∈ . The values ( )
IA i

xµ  and ( )
IA i

xν  denote the 

degree of membership and the degree of non-membership of 

element 
i

x X∈  to IA , respectively. For each intuitionistic 

fuzzy set IA  in X  an intuitionistic fuzzy index of an element 

i
x X∈  in IA  can be defined as follows 

( )( ) 1 ( ) ( )IA i IA i IA ix x xρ µ ν= − + .                      (2) 

The intuitionistic fuzzy index ( )
IA i

xρ  can be considered 

as a hesitancy degree of 
i

x  to IA . It is seen that 

0 ( ) 1
IA i

xρ≤ ≤  for all 
i

x X∈ . Obviously, when 

( ) 1 ( )
IA i IA i

x xν µ= −  for every 
i

x X∈ , the intuitionistic fuzzy 

set IA  is an ordinary fuzzy set in X . For each ordinary 

fuzzy set A  in X , we have ( ) 0
A i

xρ = , for all 
i

x X∈ . 

The binary intuitionistic fuzzy relation IR  on X  is an 

intuitionistic fuzzy subset IR  of X X× , which is given by 

the expression 

{ }( , ), ( , ), ( , ) | ,i j IR i j IR i j i jIR x x x x x x x x Xµ ν= ∈ ,        (3) 

where : [0,1]IR X Xµ × →  and : [0,1]IR X Xν × →  satisfy 

the condition 0 ( , ) ( , ) 1
IR i j IR i j

x x x xµ ν≤ + ≤  for every 

( , )
i j

x x X X∈ × . 

An intuitionistic fuzzy relation IFR( )IR X∈  is reflexive if 

for every ix X∈ , ( , ) 1IR i ix xµ =  and ( , ) 0IR i ix xν = . An 

intuitionistic fuzzy relation IFR( )IR X∈  is called symmetric 

if for all ( , )
i j

x x X X∈ × , a condition 

( , ) ( , )
IR i j IR j i

x x x xµ µ=  and a condition 

( , ) ( , )
IR i j IR j i

x x x xν ν=  are met. An intuitionistic fuzzy 

relation IT  in X  is called an intuitionistic fuzzy tolerance if 

it is reflexive and symmetric. 

3. Some Distances Between Intuitionistic 

Fuzzy Sets 

Let us remind some distances between intuitionistic fuzzy 

sets which were proposed by Szmidt and Kasprzyk in 

different publications and summarized in [16]. In particular, 

for two intuitionistic fuzzy sets IA  and IB  in X  the 

following distances were proposed:  

� the normalized Hamming distance: 

( )( )

1

1
( , ) ( ) ( ) ( ) ( ) ( ) ( )

2

n

IFS A i B i A i B i A i B i

i

l A B x x x x x x
n

µ µ ν ν ρ ρ
=

= − + − + −∑     (4) 

� the normalized Hausdorff distance: 

( )( )

1

1
( , ) max ( ) ( ) , ( ) ( ) , ( ) ( )

2

n

IFS A i B i A i B i A i B i

i

h A B x x x x x x
n

µ µ ν ν ρ ρ
=

= − − −∑       (5) 

� the normalized Euclidean distance: 

( ) ( ) ( )( )2 2 2

( )

1

1
( , ) ( ) ( ) ( ) ( ) ( ) ( )

2

n

IFS A i B i A i B i A i B i

i

e A B x x x x x x
n

µ µ ν ν ρ ρ
=

= − + − + −∑    (6) 

These distances satisfy the conditions of the metric [16]. A 

unique value of dissimilarity between intuitionistic fuzzy sets 

IA  and IB  in X  is the result of application formulas (4) – 

(6) to the intuitionistic fuzzy sets. So, a value of similarity 

between intuitionistic fuzzy sets IA  and IB  can be 

calculated from the complement operation [17] 

( ) ( )
( , ) 1 ( , )

IFS IFS
s A B d A B= − ,                             (7) 

where ( )
( , )

IFS
d A B  is a general notation for the distances (4) 

– (6). 

4. Similarity Measures for Constructing 

Intuitionistic Fuzzy Tolerances 

The method for constructing the intuitionistic fuzzy 

tolerance relation from a family of intuitionistic fuzzy sets 

was proposed by Wang, Xu, Liu and Tang in [18]. The 

corresponding similarity measure is based on the normalized 

Hamming distance and the similarity measure can be 

expressed by a formula 

( )

( ) 1 1

1

1, 0 ,

1 1
1 ( ) ( ) ( ) ( ) ,

( , )
,

1
( ) ( )

n n

IA i IB i IA i IB i
l IFS i i

n

IA i IB i

i

IA IB

x x x x
s IA IB n n

IA IB

x x
n

ν ν ρ ρ

ν ν

= =

=

 =

  − − − − =   ≠  −  

∑ ∑

∑

, (8) 

for all 1, ,i n= … . That is why the closeness degree 

( )( ) ( ) ( )( , ) ( , ), ( , )l IFS l IFS l IFSs IA IB IA IB IA IBµ ν=  of intuitionistic 

fuzzy sets IA  and IB  can be constructed according to the 

formula (8). Obviously, if all the differences of values of the 

non-membership degree and the differences of values of the 

intuitionistic fuzzy index of two objects IA  and IB  with 

respect to attributes 
i

x , 1, ,i n= …  get smaller, then the two 

objects are more similar to each other for all 1, ,i n= … .  

The corresponding intuitionistic fuzzy relation possesses 

the symmetry property and the reflexivity property. 

Moreover, the condition ( ) ( )
0 ( , ) ( , ) 1

l IFS l IFS
IA IB IA IBµ ν≤ + ≤  

is met for any intuitionistic fuzzy sets IA  and IB . These 

facts were proved in [18]. 

On the other hand, a similarity measure based on the 

normalized Hausdorff distance was proposed in [19]. The 

similarity measure can be written as follows: 

{ }
1

( )

1

1
1 max ( ) ( ) , ( ) ( ) ,

( , )
1

max ( ) ( )

n

IA i IB i IA i IB i

i

h IFS n

IA i IB i

i

x x x x
n

s IA IB

x x
n

ν ν ρ ρ

ν ν

=

=

 − − − 
 =
 

− 
 

∑

∑

.      (9) 

A similarity measure based on the normalized Euclidean 

distance was proposed in [20] and the corresponding 

similarity measure is defined by a formula 

( ) ( )

( )

2 2

1

( )
2

1

1
1 ( ) ( ) ( ) ( ) ,

2
( , )

1
( ) ( )

2

n

IA i IB i IA i IB i

i

e IFS n

IA i IB i

i

x x x x
n

s IA IB

x x
n

ν ν ρ ρ

ν ν

=

=

 − − + − 
 =
 

− 
 

∑

∑
.    (10) 
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The closeness degrees ( )
( , )

IFS
s IA IB  of intuitionistic fuzzy 

sets IA  and IB  satisfy the condition 

( ) ( )
0 ( , ) ( , ) 1

IFS IFS
IA IB IA IBµ ν≤ + ≤ , where 

( )( ) ( ) ( )( , ) ( , ), ( , )IFS IFS IFSs IA IB IA IB IA IBµ ν=  is a general 

notation for the similarity measures (9), (10). The 

corresponding intuitionistic fuzzy relations satisfied to the 

symmetry property and the reflexivity property. That is why 

the intuitionistic fuzzy relations are intuitionistic fuzzy 

tolerances. 

5. Numerical Experiments 

Let us consider application of the considered distances and 

similarity measures between intuitionistic fuzzy sets to solving 

the classification problem. For the purpose, Wang’s cars data 

set [18] were used. The data set contains the information of ten 

new cars 
i

x , 1, ,10i = …  to be classified into several kinds. 

Each car has six evaluation attributes which represent the oil 

consumption, coefficient of friction, price, comfortable degree, 

design and safety coefficient evaluated for five cars. Denote oil 

consumption by 
1x , coefficient of friction by 

2x , price by 
3x , 

comfortable degree by 
4x , design by 

5x  and safety coefficient 

by 
6x . The characteristics of cars under the six factors 1tx , 

1
1, ,6t = …  are represented by the intuitionistic fuzzy sets, as 

shown in Table 1. Thus, each car can be interpreted as an 

intuitionistic fuzzy set 
i

x , 1, ,10i = …  on the universe of 

attributes 1tx , 
1

1, ,6t = … .  

Table 1. The initial intuitionistic fuzzy data. 

Cars 
Factors 

x1 x2 x3 x4 x5 x6 

x1 (0.8, 0.1) (0.4, 0.1) (0.6, 0.1) (0.7, 0.3) (0.6, 0.2) (0.5, 0.0) 

x2 (0.0, 0.3) (0.1, 0.3) (0.0, 0.6) (0.0, 0.5) (0.5, 0.3) (0.4, 0.2) 

x3 (0.2, 0.0) (0.9, 0.1) (0.0, 0.7) (0.0, 0.1) (0.3, 0.2) (0.8, 0.2) 

x4 (0.0, 0.5) (0.3, 0.0) (0.7, 0.1) (0.6, 0.1) (0.0, 0.7) (0.7, 0.2) 

x5 (0.4, 0.6) (0.2, 0.4) (0.9, 0.1) (0.6, 0.1) (0.7, 0.2) (0.7, 0.3) 

x6 (0.0, 0.2) (0.0, 0.0) (0.5, 0.4) (0.5, 0.4) (0.3, 0.6) (0.0, 0.0) 

x7 (0.8, 0.1) (0.2, 0.1) (0.1, 0.0) (0.7, 0.0) (0.6, 0.4) (0.0, 0.6) 

x8 (0.1, 0.7) (0.0, 0.5) (0.8, 0.1) (0.7, 0.1) (0.7, 0.1) (0.0, 0.0) 

x9 (0.0, 0.1) (0.5, 0.1) (0.3, 0.1) (0.7, 0.3) (0.1, 0.3) (0.7, 0.2) 

x10 (0.3, 0.2) (0.7, 0.1) (0.2, 0.2) (0.2, 0.0) (0.1, 0.9) (0.9, 0.1) 

Matrices of ordinary fuzzy tolerance relations were 

constructed according to formulas (4) – (6) and (7). So, the 

D-PAFC-algorithm can be applied to each fuzzy tolerance. 

Let us consider the results of numerical experiments.  

By executing the D-PAFC-algorithm for the fuzzy 

tolerance relation obtained by using the normalized 

Hamming distance (4) and the normalized Hausdorff distance 

(5), we obtain the principal allotment ( )PR Xα
 among two 

fuzzy clusters. Membership values of two classes, obtained 

from the D-PAFC-algorithm, are presented in figures 1 and 2, 

where membership values of the first class are represented by 

□ and membership values of the second class are represented 

by ○. 

 

Figure 1. Membership functions of two fuzzy clusters obtained from the D-

PAFC-algorithm by using the normalized Hamming distance (4). 

 

Figure 2. Membership functions of two fuzzy clusters obtained from the D-

PAFC-algorithm by using the normalized Hausdorff distance (5). 

Thus, we obtain the following: the first class is composed 

by six elements and the second class consists of four 

elements in both cases. The eighth object is the typical point 

of the first intuitionistic fuzzy cluster and the third object is 

the typical point of the second intuitionistic fuzzy cluster. 

The principal allotment was obtained for the tolerance 

threshold 0.5167α =  in the case of the distance (4) and 

0.7583α =  in the case of the distance (5). 

By executing the D-PAFC-algorithm for the fuzzy 

tolerance relation obtained by using the normalized 

Euclidean distance (6) we obtain the principal allotment 

( )PR Xα
 among four fuzzy clusters for the tolerance threshold 

0.6063α = . Membership values of four classes, obtained 

from the D-PAIFC-algorithm, are presented in figure 3, 

where membership values of the first class are represented by 

○, membership values of the second class are represented by 

□, membership values of the third class are represented by ◊ , 

membership values of the fourth class are represented by ∆. 
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Figure 3. Membership functions of four fuzzy clusters obtained from the D-

PAFC-algorithm by using the normalized Euclidean distance (6). 

On the other hand, intuitionistic fuzzy tolerances were 

constructed according to formulas (8) – (10) and the D-

PAIFC-algorithm was applied to each intuitionistic fuzzy 

tolerance relation. After application of the D-PAIFC-

algorithm to matrices of intuitionistic fuzzy tolerance, the 

principal allotment 
, ( )PIR Xα β

 among sixth intuitionistic 

fuzzy clusters, which corresponds to the classification result, 

was received in each case. 

Membership values and non-membership values of six 

classes, obtained from the D-PAIFC-algorithm, are presented 

in figures 4 – 6, where membership values of the first class 

are represented by ⊲ , membership values of the second class 

are represented by ○, membership values of the third class 

are represented by □, membership values of the fourth class 

are represented by ∆, membership values of the fifth class are 

represented by ∇ , and membership values of the sixth class 

are represented by ◊ . Non-membership values of the first 

class are represented by ◄, non-memberships of the second 

class are represented by ●, non-memberships of the third 

class are represented by ■, non-memberships of the fourth 

class are represented by ▲, and non-memberships of the fifth 

class are represented by ▼, and non-membership values of 

the sixth class are represented by ♦.  

Membership values and non-membership values of 

residual elements of intuitionistic fuzzy clusters are not 

shown in figures 4 – 6.  

 

Figure 4. Membership functions and non-membership functions of sixth 

intuitionistic fuzzy clusters obtained from the D-PAIFC-algorithm by using 

the similarity measure based on the normalized Hamming distance (8). 

 

Figure 5. Membership functions and non-membership functions of sixth 

intuitionistic fuzzy clusters obtained from the D-PAIFC-algorithm by using 

the similarity measure based on the normalized Hausdorff distance (9). 

 

Figure 6. Membership functions and non-membership functions of sixth 

intuitionistic fuzzy clusters obtained from the D-PAIFC-algorithm by using 

the similarity measure based on the normalized Euclidean distance (10). 

So, we obtain the following: the first class is formed by 

three elements, the second class is composed of one element, 

the third class consists of one element, the fourth class 

contains two elements, the fifth class is composed of two 

elements, and the sixth class is formed by one element. The 

second object, the third object, the tenth object, the fifth 

object, the sixth object, and the ninth object are typical points 

of corresponding intuitionistic fuzzy clusters in the first case, 

the second object, the third object, the fourth object, the fifth 

object, the sixth object and the ninth object are typical points 

of corresponding intuitionistic fuzzy clusters in the second 

case, and the second object, the third object, the fourth 

object, the eighth object, the sixth object, and the ninth object 

are typical points of intuitionistic fuzzy clusters in the third 

case. 

6. Concluding Remarks 

The differences between heuristic possibilistic clustering 

results obtained from the D-PAFC-algorithm by using well-

known distances between intuitionistic fuzzy sets and from 

the D-PAIFC-algorithm by using similarity measures for 

constructing intuitionistic fuzzy tolerances are shown in the 
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paper. A principal allotment among fuzzy clusters is the 

result of application of the conventional D-PAFC-algorithm 

of the heuristic approach to possibilistic clustering to 

classification the attributive intuitionistic fuzzy data by using 

distances between intuitionistic fuzzy sets. A principal 

allotment among intuitionistic fuzzy clusters is the result of 

application of the D-PAIFC-algorithm to classification the 

data which can be obtained by using similarity measures. So, 

non-membership values of objects are also presented in the 

case. That is why the use of the D-PAIFC-algorithm in 

combination with the similarity measures is more preferred 

than use of the D-PAFC-algorithm in combination with 

distances between intuitionistic fuzzy sets. 

Both approaches to clustering the intuitionistic fuzzy data 

were tested on the Wang’s cars data set [18]. The results of 

applying the D-PAFC-algorithm in combination with the 

distances between intuitionistic fuzzy sets differ from each 

other for different distances. On the other hand, the results of 

applying the D-PAIFC-algorithm in combination with the 

similarity measures are resemble in all cases. However, the 

difference of results is not sufficient for preferences for one 

approach to clustering the intuitionistic fuzzy data before 

another approach. Therefore, experiments must be performed 

for other data sets in further studies. 
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